
Main content start
Victor Klee
Math And Statistics
Deceased
Fellowship year
1975-76 - University of Washington - Study 43
Tyler Journal Articles
Danaraj, Gopal; Klee, Victor; . 1978. A representation of 2-dimensional pseudomanifolds and its use in the design of a linear-time shelling algorithm. 2(C): 53-63. http://www.sciencedirect.com/science/article/pii/S0167506008703212
Danaraj, Gopal; Klee, Victor; . 1978. Which Spheres are Shellable?. 2(C): 33-52. http://www.sciencedirect.com/science/article/pii/S0167506008703200
Klee, Victor; Quaife, Howard; . 1976. Minimum Graphs of Specified Diameter, Connectivity and Valence - 1.. 1(1): 28-31. https://doi.org/10.1287/moor.1.1.28
Klee, Victor; . 1977. A linearly compact convex set dense in every vector topology. 28(1): 80-81. https://doi.org/10.1007/BF01223892
Danaraj, Gopal; Klee, Victor; . 1977. The Connectedness Game and the c -Complexity of Certain Graphs . 32(2): 431-442. https://doi.org/10.1137/0132035
Klee, Victor; van den Driessche, Pauline; . 1977. Linear algorithms for testing the sign stability of a matrix and for finding Z-maximum matchings in acyclic graphs. 28(3): 273-285. https://doi.org/10.1007/BF01389968
Danaraj, Gopal; Klee, Victor; . 1978. Which Spheres are Shellable?. 2(C): 33-52. http://www.sciencedirect.com/science/article/pii/S0167506008703200
Klee, Victor; Quaife, Howard; . 1976. Minimum Graphs of Specified Diameter, Connectivity and Valence - 1.. 1(1): 28-31. https://doi.org/10.1287/moor.1.1.28
Klee, Victor; . 1977. A linearly compact convex set dense in every vector topology. 28(1): 80-81. https://doi.org/10.1007/BF01223892
Danaraj, Gopal; Klee, Victor; . 1977. The Connectedness Game and the c -Complexity of Certain Graphs . 32(2): 431-442. https://doi.org/10.1137/0132035
Klee, Victor; van den Driessche, Pauline; . 1977. Linear algorithms for testing the sign stability of a matrix and for finding Z-maximum matchings in acyclic graphs. 28(3): 273-285. https://doi.org/10.1007/BF01389968